Stabilizing Quantum States and Automatic Error Correction by Dissipation Control

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Quantum Error Correction by Coding

Recent progress in quantum cryptography and quantum computers has given hope to their imminent practical realization. An essential element at the heart of the application of these quantum systems is a quantum error correction scheme. We propose a new technique based on the use of coding in order to detect and correct errors due to imperfect transmission lines in quantum cryptography or memories...

متن کامل

Continuous quantum error correction via quantum feedback control

We describe a protocol for continuously protecting unknown quantum states from decoherence that incorporates design principles from both quantum error correction and quantum feedback control. Our protocol uses continuous measurements and Hamiltonian operations, which are weaker control tools than are typically assumed for quantum error correction. We develop a cost function appropriate for unkn...

متن کامل

Quantum error correction of continuous-variable states against Gaussian noise

Continuous-variable quantum information protocols use quantum operations and measurements acting on states with continuous eigenvalue spectra to perform quantum information tasks such as quantum teleportation, quantum key distribution, and quantum processing [1]. An attraction of continuous-variable protocols is that many require only Gaussian states, operations, and measurements [2]—all of whi...

متن کامل

Quantum error correction for non-maximally entangled states

Quantum states have high affinity for errors and hence error correction is of utmost importance to realise a quantum computer. Laflamme showed that 5 qubits are necessary to correct a single error on a qubit. In a Pauli error model, four different types of errors can occur on a qubit. Maximally entangled states are orthogonal to each other and hence can be uniquely distinguished by a measuremen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2017

ISSN: 0018-9286,1558-2523

DOI: 10.1109/tac.2016.2622694